TheEnergyCollective.com is an independent, moderated forum dedicated to commentary & analysis on energy policy, climate change, energy technologies and fuels, and energy innovation. They have recently published a post by Dan Yurman, an article which we strongly recommend to those who want to have a thorough view of “New Paradigms [which] Emerge for Innovation and Investment in Advanced Nuclear Energy Reactor Designs”.

> To read the full article: www.theenergycollective.com

Summary

synergy.jpgIn the U.S. and Canada more than three dozen firms, representing about $1.3 billion in impatient investor money, are currently pursuing technological innovations in nuclear energy. These firms include large, big-name projects, with deep pockets, like TerraPower, and small startups like Terrestrial Energy with Series A funding.

All of them are placing their chips on a comeback for nuclear energy driven by the need to decarbonize the generation of electricity needed to power the global economy.

While large, light water reactors will continue to be significant players in the mix, the bet is that there will also be market opportunities for reactors based on new, unproven technologies, and sooner rather than later.

  • Development of roadmaps by independent developers to achieve commercial success of advanced nuclear reactors are the primary objectives as compared to the past where R&D milestones met by scientists inside government funded national labs were what counted.
  • Start-up models adapted from Silicon Valley are being used to organize the efforts with venture capital funding in the mix.
  • There are significant differences in the time lines and prospects for success between developers of small modular reactors (SMRs) based on conventional light water reactor technologies (sooner), and those efforts that are based on fast neutron reactors that don’t use water as a moderator or coolant (later).
  • Public/private partnerships with government agencies, labs, private firms, and non-profit R&D centers are the key to access to test facilities, advanced computing capabilities, and support for development of advanced materials and new types of nuclear fuels.
  • Creating a “culture of innovation” globally will be necessary to create the “ecosystems” of capabilities and resources needed for these new nuclear technologies to achieve market acceptance and to have on impact on decarbonizing electrical generation.
  • Some reactor design efforts will stop at the stage where intellectual property can be licensed by a developer to a deep pocket reactor vendor or state-owned corporation.
  • The problem for a Chief Nuclear Officer at a major electric utility is that there is no center or cohesion to this collection of innovation efforts. The many different types of technologies, each with their respective technical and economic drivers, remain to be proven through testing and the rite of passage of safety review by regulatory agencies.
  • Eventually, to achieve success, the design effort must cross a gap between media hype and prototype to get on the road to completing a unit that can be sold to customers.